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Abstract: Large black holes in an asymptotically AdS spacetime have a dual description

in terms of approximately thermal states in the boundary CFT. The reflecting boundary

conditions of AdS prevent such black holes from evaporating completely. On the other

hand, the formulation of the information paradox becomes more stringent when a black

hole is allowed to evaporate. In order to address the information loss problem from the

AdS/CFT perspective we then need the boundary to become partially absorptive. We

present a simple model that produces the necessary changes on the boundary by coupling

a bulk scalar field to the evaporon, an external field propagating in one extra spatial dimen-

sion. The interaction is localized at the boundary of AdS and leads to partial transmission

into the additional space. The transmission coefficient is computed in the planar limit and

perturbatively in the coupling constant. Evaporation of the large black hole corresponds

to cooling down the CFT by transferring energy to an external sector.
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1. Introduction

In 1974 Hawking showed that black holes radiate [1]. This phenomenon is a purely quantum

mechanical effect and is viewed as a milestone of quantum gravitational systems. Moreover,

the spectrum of the radiation produced is that of a black body. This led to the formulation

of the famous information paradox [2] shortly after, since information sent into a black hole

seems to be lost after it evaporates. This remains an outstanding problem whose resolution

would most likely lead us to a better understanding of quantum gravity.

In the past ten years we have acquired a tool, namely the AdS/CFT correspondence [3 –

5], which allows us to study gravitational systems in terms of a dual gauge theory. The

manifest unitarity of the field theory strongly suggests that no information loss occurs

during the process of black hole evaporation [6] and one such proposal for how this may

come about was formulated in [7]. Recently the information paradox has been discussed

from the dual gauge theory point of view in the context of a matrix model [8]. However,

we still lack a good description of the evaporation process from the gravity side. In order

to use the AdS/CFT duality we must consider black holes in asymptotically anti-de Sitter

spacetimes. In many aspects AdS behaves just like a box, the travel time for a null geodesic

to cross the whole space being finite. Of course, if we place a small enough black hole in AdS

it will evaporate before it gets to feel this finiteness of the surrounding space. Also, these

small black holes do not have a direct interpretation in terms of the dual CFT as they are

classically unstable [9, 10]. However, the so called large black holes which have a positive

specific heat [11] (in contrast with the small black holes) do not evaporate completely and

instead reach a configuration of thermal equilibrium with the surrounding gas of particles.
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flatflat

Figure 1: The Penrose diagram on the left shows the eternal Schwarzschild-AdS black hole. In the

diagram on the right (which is technically not a Penrose diagram) we attach a 1 + 1 dimensional

flat space to the boundary of AdS, resulting in a picture resembling the eternal black hole geometry

in flat space.

Arbitrarily massive black holes in AdS have arbitrarily high Hawking temperature but it

has been argued that this does not lead to a gravitational instability [12]. Such black

holes have a dual description in terms of a finite temperature field theory [9]. One would

think a priori that the class to which the black hole belongs is determined by the radius

of its horizon, rH , being greater or less than the characteristic scale R of AdS set by the

cosmological constant. However, it has been shown [13] that this transition from small to

large black holes occurs at a value of the ratio rH/R which falls off with a negative power

of the AdS radius in Planck units, and so can be parametrically small.

The presence of a negative cosmological constant effectively imposes reflecting bound-

ary conditions on the bulk fields and this prevents the large black holes from evaporating.

Clearly, this situation does not provide a good context to address the information paradox.

In this paper we attempt to bring the paradox back on stage by setting up a toy model

that effectively changes the boundary conditions on AdS so that it is not totally reflecting.

In this framework a minimally coupled bulk scalar field in AdS5 is coupled to a scalar field

propagating in an additional (1+1)-dimensional flat space. The interaction is localized on

the boundary of AdS and at the origin of the added flat space (see figure 1). The purpose

of this scheme is to allow part of the radiation from the black hole to be transmitted into

the extra space, thus permitting the black hole to evaporate completely. In principle, the

rate of evaporation can be obtained by determining the spectrum of the Hawking radiation

as in [1], and then integrating it over all the modes.1 This calculation will not be addressed

in the present work but is currently under investigation.

The description in terms of the dual gauge theory is as follows. The AdS/CFT cor-

respondence [4, 5] in its weakest form relates the CFT generating functional for a single

trace operator O∆ to the type IIB supergravity partition function:2

〈
ei

R

B
d4z σ(z)O∆(z)

〉
CFT

= exp
{

i extr SSUGRA[Φ]|Φ(z,ε)=ε4−∆σ(z)

}
. (1.1)

1A calculation of the Hawking radiation from AdS black holes has been done in [14] but it only addresses

the onset of black hole formation.
2There are well known issues associated with the formulation of the AdS/CFT correspondence in

Lorentzian signature [15, 16]. We will employ analytic continuation to perform our calculations in Eu-

clidean signature.
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The supergravity field Φ is dual to the operator O∆. Consider now promoting the source

σ to a propagating field by giving it a kinetic term. The path integral now runs over this

extra field and we should then have
∫

DσDXeiSCFT+i
R

B
σO∆+iS[σ] =

∫
Dσ exp

{
i extr SSUGRA[Φ]|Φ(z,ε)=ε4−∆σ(z) + iS[σ]

}
,

(1.2)

where we are denoting the fields on the CFT side collectively by X. On the right hand side,

the supergravity action is evaluated on classical solutions that satisfy the given asymptotic

form. A natural way to impose this condition is to add an interaction term of the form

∫

B

ε4−∆σ Φ . (1.3)

This will be done in section 2. Therefore, we see that the dual description of a large black

hole in AdS evaporating under this particular deformation is that of a CFT cooling down

by transferring energy from its fundamental fields to an external field. For simplicity we

take the scalar field σ (which we shall call the evaporon from now on) to live in 1 + 1

dimensions so that it only couples to the s-wave of the bulk field.

There is an extra complication which must be taken into account. As it stands, the

self-energy for the additional scalar field σ diverges as we take the cutoff ε to the boundary

of AdS. Thus, counterterms are needed to renormalize the theory. These will be carefully

computed in section 3. Nevertheless, we can see their origin from the CFT side: the OPE

of the operator O∆ with itself behaves like

O∆(z)O∆(z′) ∼ 1

(z − z′)2∆
, (1.4)

and so when two operators of the form σ(τ, x)O∆(τ, ~z) approach each other, in general we

will get divergences. Integrating over the spatial coordinates ~z then leaves divergences up to

order ε4−2∆, where ε−1 represents the cutoff on momentum. If we take our bulk scalar field

to be the dilaton the dual operator is [17] OΦ ∝ TrF 2, where Fµν represents the SU(N)

field strength, and has conformal dimension ∆ = 4. We then expect counterterms of the

form ε−4σ2(τ, 0). Of course, less singular counterterms which involve higher derivatives of

the evaporon will also be generated: for the case of the dilaton we will find counterterms in

σ̇2(τ, 0) and σ̈2(τ, 0), corresponding to quadratic and logarithmic divergences, respectively.

The field σ is dimensionless and in principle we could have non-quadratic (in σ) coun-

tertems. However, it is easy to see from the gravity side that these are absent because they

can only be generated from interactions in the bulk and these are suppressed in 1/N [3].

Therefore, these are the only possible counterterms. The other possible combinations are

either total derivatives or are related to the above ones by integration by parts.

If we take the bulk field Φ to have a mass that saturates the Breitenlohner-Freedman

bound [18], m2R2 = −4, the dual operator O∆ will have conformal dimension ∆ = 2.

Hence, this case is simpler, in the sense that we only need one counterterm to cancel the

logarithmic divergence. We will consider this special case in our calculations as well but our

real interest lies with the dilaton as massless fields easily lend themselves to a geometric
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optics treatment for the calculation of the Hawking radiation from black holes that we

would ultimately like to place in AdS.

Finally, we note that we will be working in an extremely simplified limit of the full

supergravity by just considering the one bulk scalar field isolated from the rest of the bulk

modes. However, this is a good approximation in the large N limit when all the fields

decouple.

The outline of the paper is as follows. In section 2 we set up the model that will be

adopted for the remaining of the paper on more concrete grounds. Section 3 deals with the

computation of the counterterms, which will be carried out explicitly for the case ∆ = 2

first and then for ∆ = 4. These counterterms are in fact crucial for our purposes and

in section 5 we will see explicitly that without their inclusion we would not be able to

obtain a finite transmission coefficient. We devote section 4 to finding the (dis)continuity

conditions on the interaction interface between the bulk field and the evaporon. These

conditions supplement the equations of motion and are needed to solve the scattering

problem which reduces to a set of two (coupled) equations which describe wave scattering

by a delta function potential in one dimension. This computation is done in section 5 where

we obtain a result for the transmission coefficient of the interface. Section 6 contains the

conclusions and some discussion.

2. The setup

We consider 5-dimensional Anti-de Sitter space (AdS5) with curvature R for which the

metric, in global coordinates (t, r,Ω3), reads:

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
3 , (2.1)

where

f(r) = 1 +
r2

R2
. (2.2)

With this parametrization the boundary has topology R × S3. Ultimately we would like

to put a black hole in this space. For the simplest case of an AdS-Schwarzschild solution

this amounts to adding a term − r2
0

r2 to the function f(r). However, in this paper we will be

concerned only with the asymptotic region and so we consider the metric as given above.

In fact, for reasons of computational simplicity the calculations will be performed not

in global coordinates, but rather in Poincaré coordinates, for which the AdS metric takes

the following form:

ds2 =
R2

y2

[
−dτ2 + d~z2 + dy2

]
. (2.3)

The patch defined by H ≡ {(τ, ~z, y)|y ≥ 0} covers half of AdS5 and the boundary is iden-

tified with y = 0. Therefore, the boundary in these coordinates has topology R × R
3.

Except for this difference, the second metric is the large r limit of the first one and can be

obtained by the transformation r = R2/y. Nevertheless, since we are interested in black

holes in (global) AdS we mimic the finite volume of the S3 by periodically identifying the

spatial coordinates ~z. Therefore, integrals over the full space yield a volume V3. Since we

– 4 –



J
H
E
P
0
8
(
2
0
0
8
)
0
7
5

are replacing the S3 by a 3-torus the black holes we can consider in this model are actually

black branes and these always fall in the category of ‘large’ black holes.

In order to allow part of the radiation from the black hole to leak out of AdS instead of

totally reflecting we take the bulk scalar field Φ(τ, ~z, y) to couple to a scalar field σ(τ, x), the

evaporon, which propagates in R×R
+. Even though we are generalizing σ to depend on the

extra coordinate x, the argument around equation (1.2) still follows through unchanged.

Since the evaporon lives on a real half-line we should supplement it with some boundary

condition. Ultimately we want to allow energy to be transfered between the bulk field and

the external field so we implement this by extending σ to the full real line and require it

to be an even function of x.

In the context of AdS/CFT, calculations of 2-point functions on the boundary usually

require a careful regularization which amounts to introducing a cutoff in the bulk geometry

at y = ε and then finding the solutions to the equations of motion subject to the Dirichlet

boundary condition Φ(τ, ~z, ε) = ε4−∆Φ(τ, ~z). In view of this we will take the two fields to

interact only along the hypersurface S ≡ {(τ, ~z, y)|y = ε} and in the end we want to push

this to the boundary of AdS, ε → 0.

Therefore, we shall take the following action as our starting point:

S[Φ, σ] = SΦ[Φ] + Sσ[σ] + Sint[Φ, σ] + Sc.t.[σ] , (2.4)

SΦ[Φ] = − 1

2κ2

∫

H

dτd3zdy
√−g

[
1

2
gab∂aΦ∂bΦ +

1

2
m2Φ2

]
,

Sσ[σ] = −
∫

R×R+

dτdx
1

2

[
−(∂τσ)2 + (∂xσ)2

]

Sint[Φ, σ] = λ

∫

S

dτd3z
√
−h ε4−∆ Φ(τ, ~z, ε)σ(τ, 0) ,

where gab denotes the bulk metric, g is its determinant and h represents the determinant

of the metric induced on the hypersurface S. The conformal dimension of the operator O∆

dual to the bulk scalar field is related to the mass m through [4, 5]

∆ = 2 +
√

4 + R2m2 . (2.5)

The constant κ2, which essentially comes from dimensionally reducing on the S5, has mass

dimension −3 so the bulk field is dimensionless, as well as the evaporon living in a 1 + 1

Minkowski space. Therefore, the coupling constant λ has mass dimension 8 − ∆. The

particular way in which the two fields are coupled forces the evaporon to be a real scalar

field. Note also that the field redefinition Φ =
√

2κΦnew brings the normalization of the

kinetic term for Φ into canonic form at the expense of rescaling the coupling constant,

λnew =
√

2κλ. The piece containing the counterterms, Sc.t., will be determined in the

following section.

3. Computation of the counterterms

3.1 The tachyonic scalar field case (∆ = 2)

As stated in the introduction we are mainly interested in the case of a massless scalar field in
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Figure 2: The two Feynman diagrams contributing to the evaporon (solid line) self-energy to order

O(λ2). The dashed line represents the dilaton propagating in the bulk of AdS. The counterterms

on the right are required to cancel the divergences arising from the diagram on the left.

the bulk but we will first consider the case of a massive scalar saturating the Breitenlohner-

Freedman bound [18], which corresponds to the minimal addition of counterterms for the

evaporon. In this situation we only expect logarithmic divergences in ε.

The counterterms needed can be found by carefully subtracting the divergences in

perturbation theory. At order O(λ2) there is a correction to the free σ-propagator which

comes from a dilaton mediating the propagation of the evaporon. The corresponding

Feynman diagram is shown in figure 2. Each vertex contributes a factor of i
√

2κλR4

ε2 . The

massive scalar bulk-to-bulk propagator between two points on the cutoff hypersurface S is

expressed in terms of a hypergeometric function by [19]

1

i
GΦ(τ − τ ′, ~z − ~z′) =

1

8π2R3
ξ2

2F1(1, 3/2; 1; ξ
2) =

1

8π2R3

ξ2

(1 − ξ2)3/2
, (3.1)

where ξ is given by

ξ =
2ε2

2ε2 − (τ − τ ′)2 + (~z − ~z′)2
. (3.2)

In the Lorentzian formulation care must be taken in the choice of sheet due to the branch

cut extending from 1 to ∞. This becomes important for timelike separated points on

the boundary but can be circumvented by Wick rotating, τ → −iτE, and performing the

calculation in Euclidean signature where no branch cuts are ever encountered, since ξ ≤ 1

in this case.

The next step would be to Fourier transform the dilaton propagator to momentum

space and obtain G̃Φ(ω,~k). However, since Φ only interacts with a field that does not

propagate on AdS, momentum conservation at the vertices implies that all we need is

G̃Φ(ω,~0). Hence,

1

i
G̃Φ(ω,~0) =

∫
dτd3z eiωτ 1

i
GΦ(τ, ~z) = − i

8π2R3

∫
dτEd3z eωτE

ξ2

(1 − ξ2)3/2
. (3.3)

Under the following coordinate transformation

τE = ρ sin θ ,

|~z| = ρ cos θ , (3.4)

with −π
2 ≤ θ ≤ π

2 , the above expression becomes

G̃Φ(ω,~0) =
1

8π2R3
Vol(S2)

∫ π/2

−π/2
dθ cos2(θ)

∫ µ

0
dρ ρ3 ξ(ρ)2

(1 − ξ(ρ)2)3/2
+ . . . . (3.5)
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The dots contain terms that do not contribute to the self-energy of the evaporon after

we take the limit ε → 0. We have introduced an infra-red cutoff3 at ρ = µ. Changing

integration variable from ρ to ξ, performing the integral and Taylor expanding around

ε = 0 we obtain

G̃Φ(ω,~0) = − ε4

2R3
ln

(
ε2

µ2

)
+ O(ε5) . (3.6)

Therefore, the contribution to the evaporon self-energy from the first diagram in fig-

ure 2 is equal to

(
i
√

2κλ
R4

ε2

)2

V3
1

i
G̃Φ(ω,~0) = −iκ2λ2R5V3 ln

(
ε2

µ2

)
+ O(ε) . (3.7)

Cancellation of the divergences then uniquely specifies the counterterms:

Sc.t.[σ] =
1

2
κ2λ2R5V3 ln

(
ε2

µ2

)∫
dτdx δ(x)σ2 . (3.8)

Lorentz symmetry is broken by the interaction between the two fields and as a consequence

the counterterms are not Lorentz invariant.

3.2 The massless scalar field case (∆ = 4)

Now we turn to the more interesting case of the dilaton. As we discussed in the introduction

we expect quartic, quadratic and logarithmic divergences in the evaporon effective theory

as we take ε → 0. The counterterms needed can be computed from the same Feynman

diagram in figure 2. However, now each vertex contributes a factor of i
√

2κλR4

ε4 and the

dilaton propagator between two points on the cutoff hypersurface S is [19]

1

i
GΦ(τ − τ ′, ~z − ~z′) =

3

32π2R3
ξ4

2F1(2, 5/2; 3; ξ
2) =

1

4π2R3

[
1 − 1 − 3

2ξ2

(1 − ξ2)3/2

]
, (3.9)

where ξ is again given by 3.2.

By the same arguments as above all we need to compute is the Fourier transform

G̃Φ(ω,~0),

1

i
G̃Φ(ω,~0) =

∫
dτd3z eiωτ 1

i
GΦ(τ, ~z) (3.10)

= − i

4π2R3

∫
dτEd3z eωτE

[
1 − 1 − 3

2ξ2

(1 − ξ2)3/2

]

= − i

4π2R3

∫
dτEd3z

(
1 +

1

2
ω2τ2

E +
1

24
ω4τ4

E + . . .

)[
1 − 1 − 3

2ξ2

(1 − ξ2)3/2

]
.

3This is related to the fact that we are working in Poincaré coordinates. If we had chosen to work in

global coordinates the boundary of AdS would have topology R × S
3 and the IR divergence would have

been absent.
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Again we have dropped terms that will not contribute to the self-energy of the evaporon

after we take the limit ε → 0. Under the change of variables (3.4) the above expression

becomes

G̃Φ(ω,~0) =
1

4π2R3
Vol(S2)

(∫ π/2

−π/2
dθ cos2(θ)

∫
∞

0
dρ ρ3

[
1 − 1 − 3

2ξ(ρ)2

(1 − ξ(ρ)2)3/2

]

+
ω2

2

∫ π/2

−π/2
dθ cos2(θ) sin2(θ)

∫
∞

0
dρ ρ5

[
1 − 1 − 3

2ξ(ρ)2

(1 − ξ(ρ)2)3/2

]

+
ω4

24

∫ π/2

−π/2
dθ cos2(θ) sin4(θ)

∫ µ

0
dρ ρ7

[
1 − 1 − 3

2ξ(ρ)2

(1 − ξ(ρ)2)3/2

])
. (3.11)

Again, we have introduced an IR cutoff at ρ = µ in the third term. Changing integration

variable from ρ to ξ we obtain

G̃Φ(ω,~0) =
ε4

R3

∫ 1

0
dξ

1 − ξ

ξ3

[
1 − 1 − 3

2ξ2

(1 − ξ2)3/2

]

+
ω2ε6

4R3

∫ 1

0
dξ

(1 − ξ)2

ξ4

[
1 − 1 − 3

2ξ2

(1 − ξ2)3/2

]

+
ω4ε8

48R3

∫ 1

“

1+ µ2

2ε2

”−1
dξ

(1 − ξ)3

ξ5

[
1 − 1 − 3

2ξ2

(1 − ξ2)3/2

]
+ . . . . (3.12)

The integrals over ξ can be done analytically. The result is

G̃Φ(ω,~0) =
ε4

4R3
+

ω2ε6

24R3
− ω4ε8

128R3
ln

(
ε2

µ2

)
+ O(ε9) . (3.13)

Following the usual procedure we have rescaled µ to absorb irrelevant numerical constants.

Therefore, the contribution to the evaporon self-energy from the first diagram in fig-

ure 2 is equal to

(
i
√

2κλ
R4

ε4

)2

V3
1

i
G̃Φ(ω,~0) = 2iκ2λ2R5V3

[
1

4ε4
+

ω2

24ε2
− ω4

128
ln

(
ε2

µ2

)
+ O(ε)

]
. (3.14)

Cancellation of the divergences then uniquely specifies the counterterms that must be added

to the action (2.4):

Sc.t.[σ] = κ2λ2R5V3

∫
dτdx δ(x)

[
− 1

4ε4
σ2 − 1

24ε2
σ̇2 +

1

128
ln

(
ε2

µ2

)
σ̈2

]
. (3.15)

4. Scattering off the interface

We now consider an outgoing wave for the Φ field reaching the boundary of AdS and

partially reflecting, with the remaining energy being transmitted into the extra space in

the form of an outgoing evaporon wave. We will determine the transmission coefficient

in this way but we can also consider an incoming evaporon partially reflecting. Both

calculations are expected to yield the same result.

– 8 –



J
H
E
P
0
8
(
2
0
0
8
)
0
7
5

The equations of motion can now be derived from the action (2.4) together with equa-

tions (3.8) and (3.15):

y2∂2
yΦ − 3y∂yΦ − y2∂2

τ Φ − ∆(∆ − 4)Φ = −2κ2λR ε5−∆ δ(y − ε)σ(τ, 0) , (4.1)

−∂2
τ σ + ∂2

xσ = −δ(x)λV3 R4ε−∆Φ(τ, ε) + δ(x) 2κ2λ2R5V3 f(σ) , (4.2)

where

f(σ) = −σ

2
ln

(
ε2

µ2

)
for ∆ = 2 , (4.3)

f(σ) =
σ

4ε4
− σ̈

24ε2
− σ(4)

128
ln

(
ε2

µ2

)
for ∆ = 4 , (4.4)

and we are implicitly assuming the s-partial wave for the bulk field so that it is independent

of the transverse coordinates ~z.

In the bulk region (y > ε) scalar field modes with definite frequency ω can be expressed

as a linear combination of two independent solutions of eq. (4.1):

Φ(τ, y) = e−iωτ
[
β y2J∆−2(ωy) + γ y2Y∆−2(ωy)

]
+ h.c. , (4.5)

whereas in the boundary region (y < ε) normalizability of the field requires one of the

coefficients to vanish and so

Φ(τ, y) = αe−iωτy2J∆−2(ωy) + h.c. . (4.6)

For the evaporon the solutions are simply incoming and outgoing plane waves. How-

ever, we are interested in the case in which there is no incoming wave. Thus, we take it to

be of the form

σ(τ, x) = Be−iω(τ−x) + h.c. , (4.7)

for x > 0. Recall from section 2 that we require σ to be an even function in the spatial

coordinate, σ(τ, x) = σ(τ,−x).

Equivalently, we could also consider an incident evaporon wave on the interface which

is partially reflected while the remaining fraction of energy is transmitted into an ingoing

dilaton wave in AdS. Requiring the solution for the bulk field to be ingoing is equivalent

to setting γ = iβ. In this scenario the evaporon takes the form

σ(τ, x) = Ae−iω(τ+x) + h.c. + Be−iω(τ−x) + h.c. . (4.8)

Continuity of the solution for the bulk field is implemented by

(β − α)J∆−2(ωε) + γ Y∆−2(ωε) = 0 , (4.9)

and as usual, the δ-functions on the right-hand side of equations (4.1) and (4.2) result in

discontinuities of the first derivatives:

Disc ∂yΦ|y=ε = −2κ2λRε3−∆σ(τ, 0) , (4.10)

Disc ∂xσ|x=0 = −λV3 R4ε−∆Φ(τ, ε) + 2κ2λ2R5V3 f(σ(τ, 0)) . (4.11)

– 9 –
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These conditions on the discontinuities of the first derivatives together with the condi-

tion (4.9) are sufficient to solve for the scattering coefficients α, β and γ in terms of the

remaining coefficient B. But before we do so let us pause to obtain an expression for the

transmission coefficient.

5. The transmission coefficient

In this section we calculate the transmission coefficient in terms of the parameters β and

γ. We will work explicitly with the ∆ = 4 case but the final result is the same for ∆ = 2.

Imagine a dilaton wave incident from the bulk of AdS5 and reflecting back at the

hypersurface y = ε. Using the behavior of the Bessel functions for large argument (r ≫ 1):

Jν(r) ∼
√

2

πr
cos
(
r − ν

π

2
− π

4

)
, (5.1)

Yν(r) ∼
√

2

πr
sin
(
r − ν

π

2
− π

4

)
, (5.2)

we see that for large y the dilaton behaves like Φinc + Φref , where the incident part is

given by

Φinc(τ, y) = − y3/2

√
2πω

(β + iγ)eiπ/4e−iω(τ+y) + h.c. , (5.3)

and the reflected part is

Φref(τ, y) = − y3/2

√
2πω

(β − iγ)e−iπ/4e−iω(τ−y) + h.c. , (5.4)

To obtain the reflection coefficient we consider the time average of the energy density

coming from the incident wave and from the reflected wave using the action (2.4). These

are given respectively by

〈ρinc〉 (y) =
9

8πωy2

[
|β|2 + |γ|2 + 2 Im(βγ∗)

]
, (5.5)

〈ρref〉 (y) =
9

8πωy2

[
|β|2 + |γ|2 − 2 Im(βγ∗)

]
, (5.6)

so that the reflection coefficient is

|R|2 ≡ 〈ρref〉
〈ρinc〉

= 1 − 4 Im(βγ∗)

|β|2 + |γ|2 + 2 Im(βγ∗)
. (5.7)

Thus, we conclude that we need the coefficients β and γ to scale with ε in a similar

fashion in order to obtain partial transmission of the waves at the boundary after we take

the limit ε → 0. The coefficients β and γ derived from the action (2.4) ignoring the Sc.t.

piece do not scale accordingly. However, this is precisely remedied by the addition of the

counterterms we have found in section 3. For the situation of an incident evaporon wave

on the interface the reflection coefficient takes the expected form:

|R|2 =
|B|2
|A|2 . (5.8)
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We are now able to complete the scattering calculation and obtain the reflection and

transmission coefficients. Using the (dis)continuities relations (4.9)–(4.11) we can express

β and γ in terms of the coefficient B:

γ = B
2λκ2R

ω

ε−3J2(ωε)

J1(ωε)Y2(ωε) − J2(ωε)Y1(ωε)
, (5.9)

β = B
2λκ2R

ω

ε−3Y2(ωε)

J2(ωε)Y1(ωε) − J1(ωε)Y2(ωε)

+B
ε2

J2(ωε)

[
2iω

λR4V3
− λκ2R

2

{
1

ε4
+

ω2

6ε2
− ω4

32
ln

ε2

µ2

}]
. (5.10)

These expressions are valid for the ∆ = 4 case. Now, if we take the limit ε → 0 both

coefficients remain finite:

γ → −π

8
λκ2ω2R B , (5.11)

β → − 16i

λR4V3ω
B +

λκ2Rω2

4
B ln(µ ω) . (5.12)

Therefore, using eq. (5.7) we obtain the following formula for the transmission coefficient:

|T |2 = 1 − |R|2 =
2

1 + 1
4π

(
ω4

ω

)3
+ π

(
ω
ω4

)3 [
1 + 4

π2 (ln(µ ω))2
] , (5.13)

where we have defined ω4 ≡ 8(2λ2κ2R5V3)
−1/3. The result (see figure 3) depends logarith-

mically on the scale µ but all the dependence on the cutoff ε has canceled out as necessary.

Similarly, we could have solved the problem of an incident evaporon wave partially trans-

mitting through the interface. Using eq. (5.8) this leads to the same result.

The result for the ∆ = 2 case is very similar. While the coefficients γ and β are

given by

γ → −πλκ2R B , (5.14)

β → − 2iω

λR4V3
B + 2λκ2RB ln(µ ω) , (5.15)

the transmission coefficient is almost identical to (5.13). Indeed, we can package the two

cases into a single formula:

|T |2 =
2

1 + 1
4π

(
ω∆

ω

)2∆−5
+ π

(
ω

ω∆

)2∆−5 [
1 + 4

π2 (ln(µ ω))2
] , (5.16)

with ω2 ≡ λ2κ2R5V3/4.

Figure 3 shows that the transmission coefficient has two branches. For low frequencies

it is an increasing function but then it turns around and becomes decreasing. As a result, for

each value of the coupling constant λ (or equivalently of ω∆) there is an optimal frequency

to transfer energy out of the bulk. This can be understood as follows. If we discard the

logarithmic correction in equation (5.16) we can trade the dependence on the frequency
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Figure 3: The transmission coefficient is plotted as a function of the frequency in units of the UV

cutoff scale ν ≡ µ ω. The result is shown for four different values of the effective coupling constant,

equally in units of the UV cutoff scale, n ≡ µ ω4.

by a dependence on the coupling. When the coupling is weak only a small fraction of the

wave in the bulk is absorbed at the interaction interface and the rest gets reflected at the

boundary of AdS. On the opposite extreme, when the coupling is strong, most of the wave

does not even reach the boundary and instead bounces off the interface. Interestingly, we

have found that which of the two coupling regimes (weak or strong) corresponds to low

energy scattering depends on the conformal dimension ∆. The meaning of this curious fact

is not clear at the moment.

6. Conclusions and discussion

In conclusion, we have presented a toy model that allows large black holes in AdS to

evaporate. This was achieved by coupling, at the boundary of AdS, a bulk scalar field rep-

resenting the Hawking radiation to an external scalar field. Such a modification effectively

changes the boundary conditions so that it becomes only partially reflective, permitting

some energy to leak out of AdS. In the dual gauge theory description this situation cor-

responds to adding a weakly coupled sector to the strongly coupled CFT. The large black

hole represents a high temperature thermal state and the evaporation of the former is

associated with the cool down of the CFT by transferring energy to the external sector.

We have computed the transmission coefficient in the framework of the toy model.

This was done perturbatively to second order in the coupling constant and involved careful

regularization and addition of appropriate counterterms. We found a resonant-like behavior

for the transmission coefficient as a function of the frequency: bulk modes only decay

efficiently if they have a frequency close to the resonance.

One could also be concerned about the evaporon mass that enters through the coun-

terterms back-reacting on the geometry. This would be incorporated by inclusion of in-
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teractions with gravitons but in the large N limit we are considering we can safely ignore

this effect.

It would be interesting to compute the rate of evaporation allowed by this scenario for

the large black holes in an asymptotically anti-de Sitter spacetime. In principle, this can

be done along the lines of [1]. The calculation essentially amounts to finding the overlaps

between the evaporon modes in the past and future null infinities. The result obtained

above for the transmission coefficient will then enter the evaporation rate in the same way

as a gray-body factor, i.e. it is a multiplicative factor that distorts the spectrum of the

Hawking radiation. We hope to report on this work in the near future.

A full account of the evaporation process is beyond the scope of this paper but we see

no reason to suspect that the features of our model ruin the evaporation of the black hole, at

least while we remain in the class of large black holes in AdS. Of course, the transmission

coefficient relies solely on properties of the boundary of AdS and the coupling to the

auxiliary dimension, so it does not depend on the size of the black hole, in contrast with

the gray-body factor. One might worry that, as the black hole shrinks and the peak of the

radiation spectrum (with the gray-body factor included) shifts toward lower frequencies, we

reach a point where the evaporation halts. Indeed, even if we start with the ideal situation

in which the coupling ω∆ is chosen such that the peak in the transmission coefficient fits

the radiation spectrum, a mismatch will develop as the black hole evaporates. However,

the rate of energy loss from the black hole is determined by the overlap of these two

finite functions of the frequency and so there should be no concern about the evaporation

process ever stopping. Stated equivalently, no matter what the characteristic frequency of

the radiation reaching the boundary of AdS is, there will always be some fraction of that

energy lost to the auxiliary dimension. Therefore, the rate of shrinkage may decrease but

it will not stop.

Usually the information paradox is presented in terms of an evolution from a non-

singular pure state before the formation of a black hole into an also non-singular mixed

state which is expected to be left after a black hole evaporates. The black hole formation

can be easily accommodated in our model: one can simply imagine a collapsing spherical

shell of matter being sent in from the auxiliary flat space and propagating into AdS,

consequently producing a black hole. Only a fraction of the shell will be transmitted at

the interface but there is no upper limit on the amount of energy one can initially endow

the collapsing shell with.

As the black hole shrinks it will eventually cease to belong to the class of AdS large

black holes and the dual field theoretic description becomes less clear at that point. Nev-

ertheless, the evaporation process is expected to continue at least until the Hawking-Page

transition, when the size of the black hole is comparable to the AdS scale R. Note that

one does not need complete evaporation to arrive at the information paradox: according

to [20], one starts recovering information encoded in the Hawking radiation after half of the

initial entropy of the black whole has been radiated, which contradicts the semi-classical

result of a black-body spectrum for the radiation. One may then simply consider forming

a black hole with Schwarzschild radius rS ≫ R and letting it evaporate until rS ∼ R so

that a version of the information paradox still applies.
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